
Eur. Phys. J. B 24, 37–41 (2001) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. The collective charge density excitations in asymmetric double-quantum-well (DQW) structures
with different tunneling strengths are systematically studied. In particular, the damping properties of the
plasmon modes in various tunneling strengths are investigated in detail. It is shown that plasmon modes in
asymmetric DQW structures are quite different from those in symmetric DQW systems. In weak tunneling
regime, an intra-subband mode ω− with an acoustic-like dispersion relation which is damped in symmetric
DQW structures arises and coexists with the optical-like mode ω+ while the inter-subband mode ω10 is
highly damped. With the tunneling strength being increased, the ω10 branch gradually becomes undamped
and emerges out of the (1–0) single-particle continuum, whereas the ω− branch gradually approaches the
(0–0) single-particle continuum. In intermediate coupling regime, these three branches of modes coexist
undamped. In strong tunneling regime, ω− enters the (0–0) single-particle continuum and becomes damped.
Consequently, only the ω+ and ω10 modes exist in this regime.

PACS. 73.21.-b Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and
nanoscale systems

1 Introduction

Due to its importance in revealing the electron-electron
many-body interactions such as the exchange-correlation
effects in low electronic density and the Coulomb
drag effects, plasmon modes in double-quantum-well
(DQW) structures have attracted a great deal of
theoretical [1–10] and experimental [11–14] interest over
the last two decades. However, most of the studies so far
are concentrated on plasmons in symmetric DQW struc-
tures, whereas the effects of asymmetry are rarely stud-
ied. In a symmetric DQW system without tunneling cou-
pling, the optical and acoustic modes were predicted [1,2]
and observed [13,14]. These two modes correspond to the
in-phase and out-of-phase inter-layer charge density fluc-
tuations, with long wavelength dispersion relations pro-
portional to q1/2 and q, respectively. The effects of tun-
neling on plasmon modes in symmetric DQW structures
have also been investigated extensively [7–9]. It is found
that the acoustic mode develops a long wavelength gap
in the presence of tunneling. It is also pointed out that
in symmetric DQW structures the optical and acoustic
modes are independent and may cross to each other. In
addition to the extensive studies of plasmon modes in
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symmetric DQW structures, the effects of asymmetry in
asymmetric single-quantum-well (SQW) and DQW struc-
tures have also been touched upon by several authors. Jain
et al. studied plasmon modes in an asymmetric SQW and
in a DQW structure consisting of two asymmetric SQWs
separated by 940 Å [3]. In both structures, the asymmet-
ric nature of the systems results in the coupling and siz-
able splitting (anti-crossing) of the relevant modes. Re-
cently, plasmon modes in asymmetric double-parabolically
graded quantum wells in strong tunneling regime were
considered by Wendler et al. [9]. Two modes correspond-
ing to the intra- and inter-subband modes in symmetric
structures were found. However, different from plasmon
modes in symmetric DQW structures, these two modes
repulse with each other, leading to the anti-crossing phe-
nomenon similar to Figure 3 in reference [3].

From subband viewpoint, the plasmon modes in sym-
metric DQW structures can be separated into intra- and
inter-subband modes. In the absence of tunneling, the
inter-subband mode ω10 is just the acoustic branch [7].
In the presence of tunneling, this mode develops a long
wavelength gap [8]. In fact, there are two branches of
intra-subband modes in symmetric DQW structures, i.e.,
the ω+ branch (optical mode) and the ω− branch. But
ω− is always damped [9]. Hence, only the ω+ and ω10

modes can be observed. In asymmetric DQW structures,



38 The European Physical Journal B

however, the intra- and inter-subband modes are coupled
with each other and can not be separated any more. In
view of the qualitative differences between symmetric and
asymmetric DQW structures, it is possible that the effects
of the spatial asymmetry and mode coupling may make
ω− undamped in certain conditions. In reference [9], the
authors only considered the strong tunneling regime and
did not find the ω− mode. If we adjust the many-body
interaction in asymmetric DQW structures by controlling
the tunneling strength, the originally damped ω− mode in
strong tunneling regime may move out of the single parti-
cle continua and the coexistence of the three branches of
plasmon modes may be observed.

Motivated by the above mentioned ideas, we system-
atically study the effects of tunneling on plasmon modes
in asymmetric DQW structures. In particular, the varia-
tions of the plasmon modes with tunneling strength are
investigated in detail. To the best of our knowledge, this
is the first systematical investigation in this direction. It is
shown that the plasmon modes are affected by tunneling
effects significantly, and that an asymmetric DQW struc-
ture can support two or three plasmon modes depend-
ing on the tunneling strength. In all the cases, the intra-
subband mode with long wavelength dispersion ω+ ∼ q1/2

always exists. In weak tunneling regime, the optical-like
mode and an intra-subband mode with an acoustic-like
long wavelength dispersion relation ω− ∼ q are supported.
Going to the other extreme, we find that an inter-subband
mode (ω10) coexists with the ω+ mode while the originally
existing ω− mode in the weak tunneling regime disappears
now in the strong tunneling regime. We show that these
three branches can coexist at certain tunneling strength
between the weak and strong tunneling regimes. In ad-
dition, anti-crossing between the ω+ and ω10 modes can
be also seen. It should be noted that in contrast to the
symmetric situation, all the modes in asymmetric struc-
tures are coupled together. Strictly speaking, there are
no pure intra- and inter-subband modes in asymmetric
DQW structures. However, we can keep the denotation of
the modes in the symmetric case for convenience of dis-
cussion.

The rest of this paper is organized as follows. In Sec-
tion 2, we give the outlined formulas for determining the
plasmon modes and a detailed analysis of the effects of
tunneling on plasmon modes in asymmetric DQW struc-
tures. The numerical results are presented in Section 3.
And finally, a brief summary is provided in Section 4.

2 Formulas and analysis

It is well known that the plasmon modes are determined
by the zeros of the dynamical dielectric function of the
system which can be written as

εll′,nn′(q, ω) = δln′δl′n − Ull′,nn′(q)Πnn′(q, ω) , (1)

where

Ull′,nn′(q) =
∫ ∫

ϕ∗l (z)ϕl′(z)

× U(q, z, z′)ϕ∗n(z′)ϕn′(z′) dz dz′ (2)

is the Coulomb interaction matrix element and

Πnn′(q, ω) = 2
∑
k

fn(k)− fn′(k + q)
~(ω + i0+) +En(k)−En′(k+q)

(3)

is the irreducible electron polarizability function. Here

U(q, z, z′) =
e2

2εrε0q
e−q|z−z

′| (4)

is the two-dimensional Fourier transform of U(r, r′) which
stands for the Coulomb interaction between two electrons
lying at r and r′, respectively. For a two-subband model,
the plasmon modes are determined by∣∣∣∣∣∣∣

1− U00,00χ00 −U00,10χ10 −U00,11χ11

−U10,00χ00 1− U10,10χ10 −U10,11χ11

−U11,00χ00 −U11,10χ10 1− U11,11χ11

∣∣∣∣∣∣∣ = 0 , (5)

where

χnn′(q, ω) =
Πnn′(q, ω) +Πn′n(q, ω)

1 + δnn′
· (6)

In symmetric DQW structures, it follows Ull′,nn′ = 0
if l + l′ + n+ n′ is an odd number and thus, equation (5)
can be separated into two equations∣∣∣∣∣1− U00,00χ00 −U00,11χ11

−U11,00χ00 1− U11,11χ11

∣∣∣∣∣ = 0 , (7)

and

1− U10,10χ10 = 0 , (8)

describing the intra-subband mode (ω+) and the inter-
subband mode (ω10), respectively. In the case of zero tun-
neling, ω10 behaves as an acoustic mode in a long wave-
length limit, whereas when tunneling effects switch on,
it develops a long wavelength gap. Compared with the
symmetric counterpart, plasmon modes in an asymmet-
ric DQW structure are quite different. Strictly speaking,
Ull′,nn′ can not be taken as zero when l + l′ + n + n′ is
an odd number. As a result, equation (5) can not be sep-
arated into two sub-equations. This means that all the
modes are coupled together. However, if the system does
not deviate from symmetry seriously, the relationship that
the matrix elements with l = l′, n = n′ are much larger
than those with l+ l′+n+n′ = odd number will be held.
In this case, splitting equation (5) into (7) and (8) should
be approximately valid.

We first consider the intra-subband modes determined
by equation (7). Expanding χ00 and χ11 in the low-
est order of q, we can obtain χ00(q, ω) = N0q

2/m∗ω2



Xin-Hai Liu et al.: Tunneling effects on plasmon modes in asymmetric DQW’s 39

and χ11(q, ω) = N1q
2/m∗ω2, where N0 (N1) is the two-

dimensional electronic density of the E0 (E1) level. Use
these two expressions in equation (7), we can obtain two
solutions

ω2
± =

qe2

4m∗ε0εr
(f00,00N0 + f11,11N1)

×
(

1±

√
1−

4
(
f00,00f11,11 − f2

00,11

)
N0N1

(f00,00N0 + f11,11N1)2

)
,

(9)

where

fll′,nn′(q) =
∫ ∫

ϕ∗l (z)ϕl′(z)e−q|z−z
′|ϕ∗n(z′)ϕn′(z′) dz dz′.

(10)

Since (f00,00f11,11−f2
00,11)N0N1 � (f00,00N0 +f11,11N1)2

is satisfied, these two solutions can be approximated as

ω2
+ ≈

qe2

2m∗ε0εr
(f00,00N0 + f11,11N1) , (11)

and

ω2
− ≈

qe2

2m∗ε0εr

(
N0N1

f00,00N0 + f11,11N1

)
G(q) , (12)

where G(q) = f00,00(q)f11,11(q)−f2
00,11(q). For symmetric

DQW structures, f00,00(q) ≈ f11,11(q) ≈ f00,11(q) is valid
in the long wavelength limit for the whole tunneling. As a
result, ω− → 0 is valid, which means that this mode lies
in the single-particle continua and is highly damped, and
therefore, ω+ is the only undamped intra-subband mode.
In asymmetric DQW structures, however, things are quite
different. Similar to the symmetric case, the ω+ branch
exists in all the tunneling strengths with an optical long
wavelength dispersion relation, i.e., ω+(q → 0) ∼ q1/2. As
for the ω− mode, we find that it may or may not damped,
depending on the tunneling strength. According to our
numerical results, G(q) is approximately proportional to
q in the long wavelength limit, as shown in Figure 1,
where G(q)–q relation in asymmetric DQW structures
with w1 = 22.5 nm, w2 = 20.0 nm, Vb = 180 meV, and
n2DEG = N0 +N1 = 1.6× 1011 cm−2 for different barrier
widths is displayed. This relationship in conjunction with
f00,00(q) ≈ f11,11(q) → 1 when q → 0 yields an acous-
tic dispersion relation for the ω− mode. From Figure 1,
we can also see that the smaller the barrier width b, the
smaller the value of G(q) is. This is caused by the fact
that the difference between f00,00 (or f11,11) and f00,11 de-
creases with the increase of the tunneling strength. As a
result, the energy of the ω− mode decreases when the tun-
neling strength becomes stronger. Thus, the ω− mode is
undamped in the weak tunneling regime but draws closer
to the (0–0) single-particle continuum as the tunneling
strength increases. Once the tunneling exceeds a critical
value, ω− will be squeezed into the single-particle continua
and becomes damped.
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Fig. 1. Calculated G(q)–q relation in asymmetric DQW struc-
tures with w1 = 22.5 nm, w2 = 20.0 nm, Vb = 180 meV, and
n2DEG = 1.6 × 1011 cm−2 for b = 10.0, 5.0, 4.0 and 2.5 nm.
Here w1 and w2 are the widths of the two wells, b and Vb are
the width and height of the inter-well barrier, and n2DEG is
total two-dimensional electronic density.

We now turn to equation (8) which gives the inter-
subband mode ω10. In symmetric DQW structures, ω10

lies out of the single-particle continua for all the tunnel-
ing strengths. In the finite tunneling regime, ω10 has a long
wavelength gap. Due to the dynamical many-body effects,
it is above the corresponding (1–0) single-particle contin-
uum in the long wavelength limit. With the decrease of the
tunneling strength, both ω10 and the (1–0) single-particle
continuum move downward. In this process, ω10 is always
above the (1–0) single-particle continuum. Thus, ω10 never
becomes damped in long wavelength limit in symmetric
DQW systems. In asymmetric DQW structures, however,
this feature of the ω10 mode may be drastically changed
by the effects of asymmetry, i.e., ω10 may become damped
at certain conditions.

3 Numerical results and discussion

To confirm the above mentioned analysis on ω+, ω− and
ω10, we perform exactly numerical calculations in terms
of equation (5) for plasmon modes in asymmetric DQW
structures with w1 = 22.5 and w2 = 20.0 nm for four bar-
rier widths: (a) b = 10.0, (b) b = 5.0, (c) b = 4.0 and (d)
b = 2.5 nm. Here w1 and w2 are the widths of the two
wells, respectively. In our calculations, the barrier height
Vb, defined as the energy difference of the conduction band
between the barrier and well layers, is taken as 180 meV,
the total two-dimensional electronic density n2DEG is cho-
sen to be 1.6× 1011 cm−2, and the background dielectric
constant is assumed to be εr = 12.87 which is appropriate
for GaAs. The numerical results are shown in Figure 2.
It is seen that the optical-like intra-subband mode (ω+)
exists in all the cases, whereas the acoustic-like intra-
subband mode (ω−) and the inter-subband mode (ω10)
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Fig. 2. Dispersion relations of plasmon modes in asymmetric DQW structures with w1 = 22.5 nm, w2 = 20.0 nm, and
Vb = 180 meV for different barrier widths: (a) b = 10.0 nm, (b) b = 5.0 nm, (c) b = 4.0 nm, and (d) b = 2.5 nm. The shaded
regions correspond to the single-particle continua.

are damped in the strong and weak tunneling regimes,
respectively. In the intermediate tunneling regime, these
three modes can coexist. In panels (a, b) and (c), the evo-
lution of the ω− mode is clearly shown. In weak tunneling
regime, ω− lies above the (0–0) single-particle continuum.
With the decrease of b, it moves gradually to and finally
enters the (0–0) single-particle continuum and becomes
damped. Similarly, as b increases, the gradually approach-
ing of the ω10 mode to the (1–0) single-particle continuum
can be also clearly seen from panels (b, c) and (d).

Our numerical results show that the effects of spatial
asymmetry on the plasmon modes in quantum well struc-
tures are essential. These effects stem from the coupling
between the inter- and intra-subband modes in asymmet-
ric systems. One phenomenon caused by this mode cou-
pling is the splitting (anti-crossing) of the relevant modes,
as has been discussed in references [3] and [9]. A more
important effect of the mode coupling is on the damping
property of the ω− and ω10 modes in different tunneling
strengths. As the central point of our work, the latter is the
first systematical investigation in this direction. Wendler
et al. did not find the ω− mode because they confined
their discussion to the strong tunneling regime in which
ω− is highly damped. Their result corresponds to panel
(d) of Figure 2 in our paper. In reference [3], the authors
studied the plasmon modes in an asymmetric SQW where
the asymmetry was simulated by elevating one-half of the
quantum well by a small amount of energy. In fact, this
structure can be regarded as a DQW system with a zero
width barrier. Bearing this point in mind, we can rea-
sonably understand their numerical result which is just
like panel (d) of Figure 2. The authors also presented the
plasmon dispersions in a system composed of two asym-

metric SQW structures separated by 940 Å (see Fig. 4 in
Ref. [3]). Similarly, this system can not be regarded as a
DQW structure any more. Instead, it actually should be
looked on as a system composed of four quantum wells.

Comparing the plasmon modes in different tunneling
strengths, we can find that tunneling has relatively little
influence on ω+, whereas its effects on ω− and ω10 are
profound. These effects are embodied in two aspects. On
one hand, tunneling effects change the frequencies of these
two modes. More importantly, tunneling effects bring es-
sential changes in the damping properties of ω− and ω10.
Since the single-particle continua (0–0) and (1–0) vary lit-
tle, the changes in the frequencies and damping properties
of these two modes are mainly caused by the dynamical
many-body effects. It is well known that the depolariza-
tion shift of the inter-subband mode, defined as the fre-
quency difference between the collective and correspond-
ing single-particle excitations, measures the magnitude of
the dynamical many-body effects. To show the many-body
effects clearly, we now turn to the analysis of the depolar-
ization shift of ω10 (∆shift

10 ). From Figure 2, we can see
that ∆shift

10 decreases from 1.01 meV when b = 2.5 nm to
0.07 meV when b = 5.0 nm, revealing the important effects
of tunneling on the dynamical many-body interactions.
This implies that we can control the many-body electron-
electron interactions by adjusting the tunneling strength.
Hence, the evolution of the plasmon modes in asymmetric
DQW structures with different tunneling strengths pro-
vides a useful tool for studying many-body effects.

As has been pointed out, a new and significant finding
of the current work is the existence of a coupling where the
acoustic and optical intra-subband plasmon modes and an
inter-subband mode coexist undamped. Experimentally,
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the observation of these three modes simultaneously re-
quires careful control of the consisting well and barrier
layers and of the electronic density. Rapid advances in fab-
rication techniques such as molecular-beam epitaxy and
modulation doping methods allow for the manufacture
of qualified samples. In addition, inelastic light scatter-
ing has become a powerful method to probe the plasmon
dispersions in low dimensional systems. For example, the
dispersion of the optical and acoustic plasmons in DQW
structures was successfully measured using this technique
very recently [13,14]. Therefore, it is expected that our
prediction can be verified in inelastic light scattering ex-
periment.

4 Summary

In conclusion, we have investigated the effects of the tun-
neling strength on plasmon modes in asymmetric DQW
structures and reported the existence of an undamped
intra-subband mode ω− in the weak and intermediate tun-
neling regimes which is always Landau damped in sym-
metric DQW structures. This mode has an acoustic-like
dispersion relation in the long wavelength limit. We have
also found that the inter-subband mode ω10 is Landau
damped in the weak tunneling regime which is different
from the symmetric case where it never becomes damped.
We have shown that these three branches can coexist in
certain tunneling strength between the weak and strong
tunneling regimes. According to our numerical results, the
frequency and the depolarization shift of the ω10 mode
change remarkably with the variation of the tunneling
strength. It can be expected that the characteristics of the
plasmon modes in asymmetric DQW systems with differ-
ent tunneling coupling strengths should provide a useful
tool for studying many-body effects.

This work was supported by the National Science Foundation
of China.
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